
Welcome to AEM 2850 / 5850!
Week 1

AEM 2850 / 5850 : R for Business Analytics

Cornell Dyson

Spring 2024

Acknowledgements: Andrew Heiss, Claus Wilke, Grant McDermott

1

https://datavizm20.classes.andrewheiss.com/
https://wilkelab.org/SDS375/
https://github.com/uo-ec607/lectures


Plan for today
Why take R for Business Analytics?

Summary of key class details

Teaser example

Just show me the data!

What makes a great visualization?

Basic base R (time permitting)

2



Why take R for Business Analytics?

3



Why take R for Business Analytics?

StatisticsProgramming

Communication

Data
Visualization

4



Why R for Business Analytics?

5



Why R for Data Visualization?

6



Why R for Data Visualization?

7



Airbnb, ggplot, and rmarkdown

The UK's reproducible analysis pipeline

Why R for Life?
Practical tool that could help you get a job and then do said job

8

https://peerj.com/preprints/3182/
https://dataingovernment.blog.gov.uk/2017/03/27/reproducible-analytical-pipeline/


Why R for Life?
Practical tool that could help you get a job and then do said job

Or start making money now!
9



Why R for Life?
Practical tool that could help you get a job and then do said job

Open source

Huge community of users and package developers

Here are a few examples of other things you can do using R:

Make slides like the ones you're looking at right now

Build websites like our course site

Write books like R for Data Science

Make interactive web apps

Skills from this course can also be used for other programming languages
10

https://aem2850.toddgerarden.com/
https://r4ds.hadley.nz/


Class details

11



Preface
1. Your success in this class is important to me

2. This course is a work in progress

3. Get the semester off to a good start: read the syllabus!

12

https://www.cameo.com/v/5f2b392a0299b100202e624a?utm_campaign=video_share_to_copy


Prof. Todd Gerarden

Economist

Came to Cornell in 2018

Interested in:

Energy economics

Climate tech

Working with data

A bit about me

13



A bit about our TAs
Graduate TA

Victor Simoes Dornelas

Undergraduate TAs

Jonathan Gotian

We will post office hours and contact info on the course site and canvas

14



A bit about you
Do you have any programming experience? (None is required or even expected!)

What programming language(s) have you used before?

R

Python

SQL

VBA

MATLAB

Stata

Other

First course assignment will be to fill out a survey to tell us more about you

15



Course objectives
1. Develop basic proficiency in R programming

2. Understand data structures and manipulation

3. Describe effective techniques for data visualization and communication

4. Construct effective data visualizations

5. Utilize course concepts and tools for business applications

16



Programming Foundations

R, RStudio, Quarto, the tidyverse

Data Visualization Foundations

the grammar of graphics, ggplot2

Special Topics

annotations, time, space, etc.

Plan for the semester

17



Plan for each week
We will follow the same general process each week:

Do readings listed on the course site before Tuesday (example: Week 1)

Tuesday: come to class, where we will discuss material for that week's topic

Thursday: come to class, where we will work through hands-on examples

Work on the lab, attend office hours as needed

Monday (following): submit lab on canvas by 11:59pm (starting with Week 1)

18

https://aem2850.toddgerarden.com/content/01-content/


Labs are short weekly homework

assignments to practice programming

Prelims are intended to assess programming

and data visualization proficiency

The group project is intended to synthesize

and reinforce skills in real-world applications

Class participation is the best way to learn

the material, attendance and completion of

in-class examples is expected

Assignments

Assignment Percent

Labs 35%

Prelim 1 20%

Prelim 2 20%

Group project 20%

Class participation 5%

Total 100%

19



Contacting us
Office hours:

TAs: TBD

Tuesdays 11:30am - 12:30pm: Prof. Gerarden in Warren 464

Other times by appointment: Prof. Gerarden, at aem2850.youcanbook.me

Email:

You can also reach us by email. The best approach is to email both me and our

grad TA Victor Simoes Dornelas at the same time. You can do that with one click

here. Please read the syllabus for tips on how to make the most of email.

20

https://aem2850.youcanbook.me/
mailto:gerarden@cornell.edu,vs424@cornell.edu


Course websites
Site for accessing course materials: (↓)

aem2850.toddgerarden.com

Site for submitting work: (↑)

canvas.cornell.edu/courses/62697

viewing announcements

viewing grades

you can also view and navigate the course site through canvas

21

https://aem2850.toddgerarden.com/
https://canvas.cornell.edu/courses/62697


Sucking
"The bad news is whenever you’re learning a new tool, for a long time you’re going to

suck. It's going to be very frustrating.

But, the good news is that that is typical, it’s something that happens to everyone, and

it’s only temporary...

Remember, when you're getting frustrated, that's a good thing, that's temporary, keep

pushing through, and in time [it] will become second nature."

Hadley Wickham, author of ggplot2, R for Data Science, and much more

I know you can succeed in this class. Don't hesitate to get help from me, TAs,

office hours, and your peers.

22



Questions about the class?

23



Teaser example

24



How does 2024 compare to 2023 so far?
Go to aem2850.toddgerarden.com/content/01-content

Click the links to download the following files:

Weather stations in NY

Weather in NY in 2023

Weather in NY in 2024

Let's make a plot that compares the evolution of daily max temps (TMAX) over

January in 2023 and 2024

Time permitting: do it on your own using software of your choice

25

https://aem2850.toddgerarden.com/content/01-content/
https://aem2850.toddgerarden.com/slides/data/01-slides/ny-stations.csv
https://aem2850.toddgerarden.com/slides/data/01-slides/ny-weather-2023.csv
https://aem2850.toddgerarden.com/slides/data/01-slides/ny-weather-2024.csv


How does 2024 compare to 2023 so far?
One way to do this in R. First, we'll need to import and prep the data:

# load packages
library(tidyverse); library(lubridate)

# identify the Cornell station
stations <- read_csv("data/01-slides/ny-stations.csv")

cornell <- stations |> filter(str_detect(NAME, "CORNELL"))

# read in and bind relevant data
clean_data <- function(y, s, m) {

  str_glue("data/01-slides/ny-weather-", y, ".csv") |>

    read_csv() |>

    inner_join(s, by = "STATION") |>

    mutate(date = mdy(DATE),

           mon = month(date),

           day = day(date),

           year = year(date)) |>

    filter(mon == m)

}

years <- c(2023, 2024)

cornell_temps <- map(years, clean_data, cornell, 1) |> bind_rows()

26



How does 2024 compare to 2023 so far?
What do the data look like?

head(cornell_temps)

## # A tibble: 6 × 19

##   STATION     DATE    DAPR  MDPR  PRCP  SNOW  SNWD  TAVG  TMAX  TMIN  TOBS NAME 

##   <chr>       <chr>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>

## 1 USC00304174 1/1/23    NA    NA  0.01     0     0    NA    51    38    38 ITHA…

## 2 USC00304174 1/2/23    NA    NA  0        0     0    NA    44    38    39 ITHA…

## 3 USC00304174 1/3/23    NA    NA  0        0     0    NA    48    29    41 ITHA…

## 4 USC00304174 1/4/23    NA    NA  0.4      0     0    NA    51    39    40 ITHA…

## 5 USC00304174 1/5/23    NA    NA  0.2      0     0    NA    57    34    35 ITHA…

## 6 USC00304174 1/6/23    NA    NA  0        0     0    NA    50    31    34 ITHA…

## # ℹ 7 more variables: LATITUDE <dbl>, LONGITUDE <dbl>, ELEVATION <dbl>,
## #   date <date>, mon <dbl>, day <int>, year <dbl>

27



# plot data
cornell_temps |> 

  ggplot(aes(x = day, 

             y = TMAX)) + 

  geom_point() + 

  theme_bw()

What's wrong with this plot?

How does 2024 compare to 2023 so far?

28



# plot data
cornell_temps |> 

  ggplot(aes(x = day, 

             y = TMAX, 

             color = as_factor(year))) +

  geom_point() + 

  theme_bw() +

  theme(legend.position = "bottom")

What's wrong with this plot?

How does 2024 compare to 2023 so far?

29



# plot data
cornell_temps |> 

  ggplot(aes(x = day, 

             y = TMAX, 

             color = as_factor(year))) + 

  geom_point() + 

  geom_smooth(se = FALSE) +

  theme_bw() +

  theme(legend.position = "bottom") +

  labs(x = "Day of month",

       y = "Max. daily temperature (F)",

       color = "Year")

How does 2024 compare to 2023 so far?

30



How does 2024 compare to 2023 so far?
This approach has two advantages over manually creating figures using software

such as excel or sheets:

1. we have a script to reproduce our work / share our methods with others

2. we can generalize and scale this much more easily than manual approach

31



# plot data
cornell_temps |> 

  ggplot(aes(x = day, 

             y = SNOW,

             color = as_factor(year))) + 

  geom_jitter() + 

  theme_bw() +

  theme(legend.position = "bottom") +

  labs(x = "Day of month",

       y = "Snowfall (inches)",

       color = "Year")

How does 2024 compare to 2023 so far?
For example we can easily generalize this approach to other weather outcomes:

32



more_years <- 2020:2024

more_temps <- map(more_years, clean_data,

                  cornell, 1) |> 

  bind_rows()

# use old code to plot new data!
more_temps |>

  ggplot(aes(x = day, 

             y = TMAX,

             color = as_factor(year))) + 

  geom_point(alpha = 0.5) + 

  geom_smooth(se = FALSE) + 

  theme_bw() +

  theme(legend.position = "bottom") +

  labs(x = "Day of month",

       y = "Max. daily temperature (F)",

       color = "Year")

How does 2024 compare to 2023 so far?
For example we can easily scale this approach to more years:

33



Just show me the data!

34



cornell_temps |>

  group_by(year) |>

  summarize(mean_max = mean(TMAX))

## # A tibble: 2 × 2

##    year mean_max

##   <dbl>    <dbl>

## 1  2023     38.2

## 2  2024     32

What's wrong with this calculation?

cornell_temps |>

  group_by(day) |>

  filter(n() != 1) |>

  group_by(year) |>

  summarize(mean_max = mean(TMAX))

## # A tibble: 2 × 2

##    year mean_max

##   <dbl>    <dbl>

## 1  2023     39.2

## 2  2024     32

Just show me the data!
Data is very powerful, but raw data is not usually enough

35



head(my_data, 10)

## # A tibble: 10 × 2

##        x     y

##    <dbl> <dbl>

##  1  55.4  97.2

##  2  51.5  96.0

##  3  46.2  94.5

##  4  42.8  91.4

##  5  40.8  88.3

##  6  38.7  84.9

##  7  35.6  79.9

##  8  33.1  77.6

##  9  29.0  74.5

## 10  26.2  71.4

mean(my_data$x)

## [1] 54.26327

mean(my_data$y)

## [1] 47.83225

cor(my_data$x, my_data$y)

## [1] -0.06447185

Seems reasonable

Seems reasonable

No correlation

Just show me the data!
Here's another example:

36



Oh no!

The Datasaurus Dozen

37

https://www.autodeskresearch.com/publications/samestats


Raw data is not enough
Each of these has the same mean, standard deviation, variance, and correlation

38



What makes a great visualization?

39



What makes a great visualization?
Truthful

Functional

Beautiful

Insightful

Enlightening

Alberto Cairo, The Truthful Art

40



What makes a great visualization?
"Graphical excellence is the well-designed presentation of interesting data—a

matter of substance, of statistics, and of design … [It] consists of complex ideas

communicated with clarity, precision, and efficiency. … [It] is that which gives to

the viewer the greatest number of ideas in the shortest time with the least

ink in the smallest space … [It] is nearly always multivariate … And graphical

excellence requires telling the truth about the data."

Edward Tufte, The Visual Display of Quantitative Information, p. 51

41



What makes a great visualization?
Good aesthetics

No substantive issues

No perceptual issues

Honesty + good judgment

Kieran Healy, Data Visualization: A Practical Introduction

42



Good aesthetics?

No substantive issues?

No perceptual issues?

Honesty + good judgment?

What's wrong?

43



Good aesthetics?

No substantive issues?

No perceptual issues?

Honesty + good judgment?

What's wrong?

44



Good aesthetics?

No substantive issues?

No perceptual issues?

Honesty + good judgment?

What's wrong?

45



Good aesthetics?

No substantive issues?

No perceptual issues?

Honesty + good judgment?

What's wrong?

46



Good aesthetics?

No substantive issues?

No perceptual issues?

Honesty + good judgment?

None of the above?

What's wrong?

47



Missing context: base rate fallacy

(most Americans are white)

Missing context: omits same-race

crime

Comparisons confounded by

differences in age, wealth, etc.

Measurement of crime may be biased

Source: Kareem Carr (click for more)

What's wrong?

48

https://twitter.com/kareem_carr/status/1655614482432012289?s=51&t=4udrKjeRsQs6F0rXVlys_A


Thread by Carl T. Bergstrom

What's right?

49

https://twitter.com/CT_Bergstrom/status/1235865328074153986


Plan for the rest of this week
Office hours:

Tuesdays 11:30am - 12:30pm: Prof. Gerarden in Warren 464

Other times by appointment: Prof. Gerarden, at aem2850.youcanbook.me

Thursday:

Intro to R, RStudio, and R Markdown / Quarto

You will need your computer for coding exercises every Thursday

See canvas announcement for instructions to get set up on posit.cloud

50

https://aem2850.youcanbook.me/
http://posit.cloud/


Plan for the rest of today
The plan for the rest of today is to introduce ourselves to base R

Introduction to base R

Object-oriented programming in R

"Everything is an object"

Reference material (cut for time):

"Everything has a name" (reserved words and namespace conflicts)

Indexing

Cleaning up

51



Introduction to base R
(Some of this is just for reference, since we also cover it in example-01)

52



Basic arithmetic
R is a powerful calculator and recognizes all of the standard arithmetic operators:

1+2 # add / subtract

## [1] 3

5/2 # divide

## [1] 2.5

2+4*1^3 # standard order of precedence (`*` before `+`, etc.)

## [1] 6

53



Logic
R also comes equipped with a full set of logical operators and Booleans

1 > 2

## [1] FALSE

(1 > 2) & (1 > 0.5) # "&" is the "and" operator

## [1] FALSE

(1 > 2) | (1 > 0.5) # "|" is the "or" operator

## [1] TRUE

54



Logic
We can negate expressions with: !

This is helpful for filtering data

is.na(1:10)

##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

!is.na(1:10)

##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

NA means not available (i.e., missing)

55



Logic
For value matching we can use: %in%

To see whether an object is contained in a list of items, use %in%:

1:10

##  [1]  1  2  3  4  5  6  7  8  9 10

4 %in% 1:10

## [1] TRUE

4 %in% 5:10

## [1] FALSE

56



Logic
To evaluate whether two expressions are equal, we need to use two equal signs

1 = 1 # this doesn't work

## Error in 1 = 1: invalid (do_set) left-hand side to assignment

1 == 1 # this does

## [1] TRUE

1 != 2 # note the single equal sign when combined with a negation

## [1] TRUE

57



Logic
Evaluation caveat: What will happen if we evaluate 0.1 + 0.2 == 0.3?

0.1 + 0.2 == 0.3

## [1] FALSE

Problem: Computers represent numbers as binary (i.e., base 2) floating-points

Fast and memory efficient, but can lead to unexpected behavior

Similar to how decimals can't capture some fractions (e.g., )

Solution: Use all.equal() for evaluating floats (i.e., fractions)

all.equal(0.1 + 0.2, 0.3)

## [1] TRUE

= 0.3333...
1

3

58



Assignment
In R, we can use either <- or = to handle assignment

Assignment with <-

<- is normally read aloud as "gets". You can think of it as a (left-facing) arrow

saying assign in this direction.

a <- 10 + 5

a

## [1] 15

59



Assignment with =
You can also use = for assignment.

b = 10 + 10

b

## [1] 20

Which assignment operator should you use?

Many R users prefer <-, inserted using the keyboard shortcut Alt/Option + -

It doesn't really matter for our purposes, other languages use =

Bottom line: Use whichever you prefer, just be consistent

60



Help
For more information on a (named) function or object in R, consult the "help"

documentation using ?

For example:

?plot

61



Vignettes
For some packages, vignette() will provide a detailed intro

vignette("dplyr")

Vignettes are a great way to learn how and when to use a package

62



Comments
Comments in R code are demarcated by #

Use comments to document your logic in .R scripts and within .Rmd code chunks

# THIS IS A CODE SECTION ----
# this is a comment
winter <- "ski season" # iykyk

Comments should be concise (unlike above)

Using at least four trailing dashes (----) creates a code section, which simplifies

navigation and code folding

Keyboard shortcut: use Ctrl/Cmd+Shift+c in RStudio to (un)comment whole

sections of highlighted code
63



Object-oriented programming in R

64



Object-oriented programming
In R:

"Everything is an object and everything has a name."

65



"Everything is an object"

66



What are objects?
There are many different types (or classes) of objects

Here are some objects that we'll be working with regularly:

vectors

matrices

data frames

lists

functions

67



Data frames
The most important object we will be working with is the data frame

You can think of it basically as an excel spreadsheet or google sheet

# create a small data frame called "d"
d <- data.frame(x = 1:2, y = 3:4)

d

##   x y

## 1 1 3

## 2 2 4

This is essentially just a table with columns named x and y

Each row is an observation telling us the values of x and y

68



head(cars)

##   speed dist

## 1     4    2

## 2     4   10

## 3     7    4

## 4     7   22

## 5     8   16

## 6     9   10

plot(cars)

Aside: built-in data frames
Base R and packages have built-in data frames with special names you can call on

For example, cars:

69



Back to objects
Each object class has its own set of rules for determining valid operations

d <- data.frame(x = 1:2, y = 3:4) # create a small data frame called "d"
d*10

##    x  y

## 1 10 30

## 2 20 40

At the same time, you can (usually) convert an object from one type to another

mat <- as.matrix(d) # convert it to (i.e., create) a matrix call "mat"
mat

##      x y

## [1,] 1 3

## [2,] 2 4

70



Working with multiple objects
In R we can have multiple data frames in memory at once

Even though we just made mat, d still exists:

d

##   x y

## 1 1 3

## 2 2 4

71



Ways to learn about objects
Printing an object directly in the console is often handy

View() is very helpful, and has the same effect as clicking on the object in your

RStudio Environment pane

Use the str command to learn about an object's structure

# d <- data.frame(x = 1:2, y = 3:4) # create a small data frame called "d"
str(d) # evaluate its structure

## 'data.frame':    2 obs. of  2 variables:

##  $ x: int  1 2

##  $ y: int  3 4

You can also use class to get an object's class without all the other details

72



Global environment
Let's go back to the simple data frame that we created a few slides earlier.

d

##   x y

## 1 1 3

## 2 2 4

Now, let's try to do a logical comparison of these "x" and "y" variables:

x < y

## Error in eval(expr, envir, enclos): object 'x' not found

Uh-oh. What went wrong here?

73



Global environment
The error message provides the answer to our question:

## Error in eval(predvars, data, env): object 'x' not found

R looked in our Global Environment and couldn't find x

We have to tell R that x and y belong to the object d

We will come back to this 74



Reference material
(We don't have time for the rest of this today)

75



"Everything has a name"

76



Reserved words
R has a bunch of key/reserved words that serve specific functions

You can't (re)assign these, even if you wanted to

See here for a full list, including (but not limited to):

if

else

while # looping
function

for # looping
TRUE

FALSE

NULL # null/undefined
Inf #infinity
NaN # not a number
NA # not available / missing

77

http://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html


Semi-reserved words
There are other words that are sort of reserved, in that they have a particular

meaning

These are named functions or constants (e.g., pi) that you can re-assign if you

really want to... but that already come with important meanings from base R

The most important example is c(), which binds and concatenates objects

together

my_vector <- c(1, 2, 5)

my_vector

## [1] 1 2 5

78



Semi-reserved words (cont.)
What do you think will happen if you type the following?

c <- 4

c(1, 2 ,5)

## [1] 1 2 5

In this case, R is "smart" enough to distinguish between the variable c and the

built-in function c()

79



Semi-reserved words (cont.)
But R won't always distinguish between conflicting definitions! For example:

pi

## [1] 3.141593

pi <- 2

pi

## [1] 2

Bottom line: Don't use (semi-)reserved words!

80



Namespace conflicts
Try loading the dplyr package in RStudio

library(dplyr)

What warning gets reported?

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union

The warning masked from 'package:X' is about a namespace conflict

81



Namespace conflicts
Whenever a namespace conflict arises, the most recently loaded package will gain

preference

The filter() function now refers specifically to the dplyr variant

What if we want the stats variant?

1. Use stats::filter()

2. Assign filter <- stats::filter

82



Solving namespace conflicts
1. Use package::function()

Explicitly call a conflicted function from a package using the

package::function() syntax

We can also use :: to clarify the source of a function or dataset in our code

dplyr::starwars # print the starwars data frame from the dplyr package
scales::comma(c(1000, 1000000)) # use the comma function, which comes from the scales package

The :: syntax also allows us to call functions without loading the package (as long

as it is installed)

83



Solving namespace conflicts
2. Assign function <- package::function

A more persistent option is to assign a conflicted name to a particular package

filter <- stats::filter # note the lack of parentheses
filter <- dplyr::filter # change it back again

84



User-side namespace conflicts
Namespace conflicts don't just arise from loading packages

Users like you and me can (and probably will!) create them through assignment

85



Indexing

86



Indexing
How do we index in R?

We've already seen an example of indexing in the form of R console output:

1+2

## [1] 3

The [1] above denotes the first (and, in this case, only) element of our output

In this case, a vector of length one equal to the value "3"

87



Indexing
Try the following in your console to see a more explicit example of indexed output:

rnorm(n = 50, mean = 0, sd = 1) # take 50 draws from the standard normal distribution

##  [1] -0.174443008  1.545317100  1.351017781  1.015205553  0.473798485

##  [6] -0.096533220 -0.322310310  0.153177244  0.239418137  0.156413413

## [11] -0.031493975  0.101216901 -0.223920645 -2.130356078  1.408712313

## [16] -0.663834759  1.148210744 -0.717833120  0.236425195  0.958974454

## [21]  0.895064434  0.477707538  0.352281509 -0.995005553  0.862133983

## [26]  0.650036197 -1.021848162 -1.415356256  0.119055675 -0.533926838

## [31]  0.002557935  0.680205965 -0.491916390  0.439463007  0.337348506

## [36]  0.004421690  0.967359169 -0.720593499  0.728681798 -1.320526053

## [41]  1.556530862 -0.723065150  0.741647289  0.248553919  1.358960055

## [46]  1.412690732  0.090484902 -0.596047126 -0.061523986  0.128014119

88



Option 1: [ ]
We can use [] to index objects that we create in R

a = 1:10

a[4] # get the 4th element of object "a"

## [1] 4

a[c(4, 6)] # get the 4th and 6th elements

## [1] 4 6

89



Option 1: [ ]
This also works on larger arrays (vectors, matrices, data frames, and lists)

starwars <- dplyr::starwars # assign for convenience
starwars[1, 1] # show the cell corresponding to the 1st row & 1st column of the data frame.

## # A tibble: 1 × 1

##   name          

##   <chr>         

## 1 Luke Skywalker

What does starwars[1:3, 1] give you?

## # A tibble: 3 × 1

##   name          

##   <chr>         

## 1 Luke Skywalker

## 2 C-3PO         

## 3 R2-D2

90



Option 1: [ ]
We haven't discussed them yet, but lists are a more complex type of array object

in R

They can contain a collection of objects that don't share the same structure

For example, you can have lists containing:

a scalar, a string, and a data frame

a list of data frames

a list of lists

91



Option 1: [ ]
The relevance to indexing is that lists require two square brackets [[]] to index

the parent list item and then the standard [] within that parent item. An example

might help to illustrate:

my_list <- list(

  a = "hello", 

  b = c(1,2,3), 

  c = data.frame(x = 1:5, y = 6:10))

my_list[[1]] # return the 1st list object

## [1] "hello"

my_list[[2]][3] # return the 3rd element of the 2nd list object

## [1] 3

92



Option 2: $
Lists provide a nice segue to our other indexing operator: $.

Let's continue with the my_list example from the previous slide

my_list

## $a

## [1] "hello"

## 

## $b

## [1] 1 2 3

## 

## $c

##   x  y

## 1 1  6

## 2 2  7

## 3 3  8

## 4 4  9

## 5 5 10
93



Option 2: $
We can call these objects directly by name using the dollar sign, e.g.

my_list$a # return list object "a"

## [1] "hello"

my_list$b[3] # return the 3rd element of list object "b"

## [1] 3

my_list$c$x # return column "x" of list object "c"

## [1] 1 2 3 4 5

94



Option 2: $
The $ form of indexing also works for other object types

In some cases, you can also combine the two index options:

starwars$name[1]

## [1] "Luke Skywalker"

95



Option 2: $
Finally, $ provides another way to avoid the "object not found" problem that we

ran into earlier

x < y # doesn't work

## Error in eval(expr, envir, enclos): object 'x' not found

d$x < d$y # works!

## [1] TRUE TRUE

96



Cleaning up

97



Removing objects
Use rm() to remove an object or objects from your working environment

a <- "hello"

b <- "world"

rm(a, b)

You can use rm(list = ls()) to remove all objects in your working

environment, though this is frowned upon

Better just to start a new R session

98

https://www.tidyverse.org/articles/2017/12/workflow-vs-script/

